SEARCHING FOR TETRAQUARKS ON THE LATTICE

S. Prelovsek^(a), T. Draper^(c), C.B. Lang^(b), M. Limmer^(b), K.-F. Liu^(c), N. Mathur^(d), D. Mohler^(b)

(a) University of Ljubljana and Jozef Stefan Institute, Slovenia [sasa.prelovsek@ijs.si] (b) University of Graz, Austria, (c) University of Kentucky, USA, (d) Tata Institute, Mubai, India

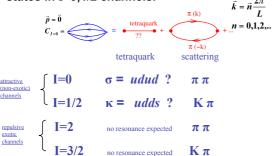
MOTIVATION

It is still not known whether the lightest observed nonet of scalar mesons $\sigma(600)$, a0(980), f0(980), $\kappa(800)$ are conventional \overline{qq} states or tetraquark \overline{qqqq} states. Therefore it is important to determine whether QCD predicts any scalar tetraquark \overline{qqqq} states below 1 GeV from a first principle calculation.

METHOD

We calculate the energy spectrum of scalar tetraquark states with I=0, 2, 1/2, 3/2 in lattice QCD for two cases: simulation with dynamical *u/d* quarks and quenched simulation.

We extract the energies of the ground and one or two excited states. So far, all simulations studied only the ground state, with exception of [1].


The energies of the states are extracted from correlation functions $C_{ij}(t)$, where states with $J^{PC}=0^{++}$ and given I are created at time 0 and annihilated at later time t:

$$C_{ij}(t) \equiv \left\langle 0 \left| O_i(t) O_j^+(0) \right| 0 \right\rangle = \sum_n Z_i^n Z_j^{n^*} e^{-E_n t}$$

$$O_{i,j} = PP, \sum_{i=1,2,3} V_i V_i, \sum_{i=1,2,3} A_i A_i, [qC\gamma_5 q] [\overline{q}C\gamma_5 \overline{q}], [qCq] [\overline{q}C\overline{q}]$$

All physical scalar states n with given I propagate between the source and the sink. Besides possible tetraquark states, there are unavoidable contributions from two pseudoscalar scattering states, which have discrete momenta $k=n*2\pi/L$.

Our main question is whether we find some additional light state on top of scattering states in I=0,1/2 channels.

We extract energies E_n from eigenvalues of the generalized eigenvalue problem [2]:

$$C(t_0)^{-\frac{1}{2}}C(t)C(t_0)^{-\frac{1}{2}}\vec{v}_n(t) = \lambda_n(t)\vec{v}_n(t)\,,\quad \lambda_n(t)\to e^{-E_n(t-t_0)}$$

DETAILS OF SIMULATION

➤ <u>dynamical simulation:</u> Chirally Improved quarks [3], $a=0.15 \, fm$, $L^3xT=16^3x32$, $m_\pi=318$, 469, 526 MeV ➤ <u>quenched simulation:</u> overlap quarks, $a=0.2 \, fm$, $L^3xT=16^3x28$, $m_\pi=230$, 342, 478 MeV

RESULTING SPECTRUM for I = 0, 2, 1/2, 3/2

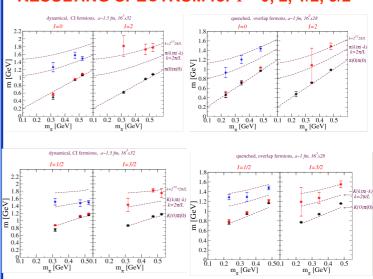


Fig: Points present extracted energies on the lattice. Lines are energies of non-interacting $\pi\pi$ or $K\pi$, with back-to-back momenta $k=n^*2\pi/L$.

CONCLUSIONS

- $ightharpoonup \underline{\text{I=0:}}$ We find candidates for lowest two $\pi\pi$ scattering states and additional light state, which can be possibly related to σ with strong tetraquark component.
- ightharpoonup We find candidates for lowest two $\pi\pi$ scattering states and no additional light state, as expected (no resonance is expected in this repulsive channel).
- ightharpoonup <u>I=1/2</u>: We find candidates for lowest two Kπ scattering states and additional light state, which can be possibly related to κ with strong tetraquark component.
- ightharpoonup I=3/2: Only candidates for lowest two $K\pi$ scattering states are found and no additional light state, as expected.

REFERENCES

- [1] S. Prelovsek and D. Mohler, PRD79 (2009), 014503;
 - N. Mathur et al., PRD 76 (2007) 014503
- [2] M. Luscher and U. Wolff, Nucl. Phys. B 339 (1990) 222;
 - B. Blossier et al., JHEP 0904 (2009) 094.
- [3] C. Gattringer et al., PRD79 (2009) 054501.